
UNCLASSFIED: Distribution Statement A. Approved for Public Release

UNCLASSIFIED 1

2011 NDIA SYSTEMS ENGINEERING CONFERENCE

OBJECT BASED SYSTEMS ENGINEERING

Pradeep Mendonza

Systems Engineering Group
US Army - TARDEC

Warren, MI

 John A. Fitch
Science Applications

International Corporation
Sterling Heights, MI

ABSTRACT

Historically Systems Engineering (SE) practitioners have focused on producing document-based
artifacts to relay SE knowledge to stakeholders and developers. More recently a large part of the
community has moved towards using view-based artifacts; e.g. DODAF to visually communicate
SE knowledge. Documents and views are simply containers that hold objects. SE knowledge is
comprised of sets (classes) of objects that are related to each other. By directly managing these
objects, containers can be reproduced as desired.

This paper proposes a shift in the focus of SE from documents and views to objects. We are not
proposing a new SE methodology, but rather a set of principles to integrate the information
created by multiple, diverse SE methods.

Object based systems engineering is based on the following principles.

• Map all SE knowledge to object classes and subclasses
• Refine this information architecture against multiple SE methods to make it as lean as

possible (maximize cohesion, minimize coupling).
• Create all objects in context (within a hierarchy appropriate to its class)
• Define each object as a set of lean attributes and relationships (avoid free-form text).
• Strive for zero redundancy (store a single instance of an object; visualize in many ways).
• Maintain continuous traceability as knowledge is derived.
• Capture the precious and transient logic behind this knowledge derivation.
• Leverage the relationships between objects to proactively manage change.
• Maintain continuity of objects across system/product life cycles and phases.
• Harvest and reuse knowledge patterns for each class of object

These principles may be applied to a diverse set of SE environments to simplify SE tasks, reduce
overlapping efforts and information silos, foster the insight that leads to innovation, improve
solution quality and accelerate development.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 OCT 2011

2. REPORT TYPE
Journal Article

3. DATES COVERED
 17-10-2011 to 17-10-2011

4. TITLE AND SUBTITLE
Object Based Systems Engineering

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Pradeep Mendonza; John Fitch

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC ,6501 E.11 Mile Rd,Warren,MI,48397-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER
#22370

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#22370

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Submitted to 2011 NDIA SYSTEMS ENGINEERING CONFERENCE.

14. ABSTRACT
Historically Systems Engineering (SE) practitioners have focused on producing document-based artifacts
to relay SE knowledge to stakeholders and developers. More recently a large part of the community has
moved towards using view-based artifacts; e.g. DODAF to visually communicate SE knowledge.
Documents and views are simply containers that hold objects. SE knowledge is comprised of sets (classes)
of objects that are related to each other. By directly managing these objects, containers can be reproduced
as desired. This paper proposes a shift in the focus of SE from documents and views to objects. We are not
proposing a new SE methodology, but rather a set of principles to integrate the information created by
multiple, diverse SE methods.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

UNCLASSFIED

UNCLASSIFIED 2

Background

Systems Engineering is a knowledge-based process. Its success depends on timely, efficient and
effective knowledge capture and sharing among a diverse set of system stakeholders,
contributors and implementers. Historically, document-based artifacts have been the primary
method of knowledge sharing among Systems Engineering team members. However, a
document-centric paradigm works against timeliness, efficiency and effectiveness by:

• Holding emerging system knowledge hostage until the next document review cycle

• Triggering the replication of much potentially-common data between documents

• Capturing information in large, free-form text paragraphs that fail to separate and
singularize important system data elements. Documents fail to clearly distinguish object,
attribute and relationship data blended within large paragraph “blobs”. This leads to high
variability in their content, format and interpretation among multiple contributors or
users; unnecessarily adding to the ambiguity associated with the system model.

• Focusing engineers on writing tasks, not thinking tasks (e.g. writing requirements instead
of defining them). If it's true that "The medium is the message” and "You get what you
ask for", asking for document prose works against lean and effective Systems Thinking.

• Conflating document structure with system decomposition hierarchies.

• Forcing users to create, maintain and synchronize redundant copies of data elements if
they wish to view this data in different contexts and for different purposes.

• Creating unnecessary manual effort to maintain unique requirement identifiers and
traceability matrices.

Documents were the best possible approach when all that existed was a manual typewriter.

The trend towards Model-Based Systems Engineering (MBSE) has shifted the emphasis of the
Systems Engineering community away from documents towards view-based artifacts. These
graphical and tabular views (whether SysML or DoDAF-based) are a welcome step toward a
more precise method of capturing and communicating Systems Engineering knowledge.

However, views also are less than the ideal focus of Systems Engineering:

• Views don’t offer full coverage of all classes of SE knowledge. They don’t capture the
full decision and derivation trace that enables proactive impact/change analysis and reuse
of knowledge across system life cycle phases. [1]

UNCLASSFIED

UNCLASSIFIED 3

• Views focus engineers on drawing diagrams or populating tables. While this is much
better than a document-authoring paradigm, the views may still become an end in
themselves rather than the natural byproduct of continuous and effective Systems
Thinking.

• Views are often populated (e.g. drawn, compiled) after-the-fact from other sources.
While they contain objects and relationships, this data is often a copy of the
original/master that is stored elsewhere. This increases the effort/cost/time required to
maintain a consistent and traceable Systems Engineering knowledge-base.

Both documents and views are necessary, but not sufficient representations of Systems
Engineering knowledge. They are simply containers that hold the objects that ultimately
represent the essence of a system. The value created by Systems Engineering lies primarily in
these objects, not the containers that deliver them.

FIGURE 1: Evolution of Systems Engineering Practice

MBSE proponents and initiatives clearly have Object-based System Engineering as their end
goal, but the state of the practice lags the vision. The goal of this paper is to help accelerate the
realization of Object-based System Engineering in the everyday practices of the defense
community. [2] [3] [4]

UNCLASSFIED

UNCLASSIFIED 4

Object-based Systems Engineering Concepts

Object-based Systems Engineering is based on the simple concept that SE knowledge is
comprised of sets (classes) of objects that are related to each other. The essential elements of
Systems Engineering can be represented by objects that are comprised of and defined by
attributes and associated through relationships. These objects can be grouped into logical
classes using an affinity process.

Software Engineering has decades of experience in mapping diverse types of knowledge to
Entity (Object)-Relationship-Attribute (ERA) models. There is nothing about Systems
Engineering data that makes it impervious to similar treatment. It is certainly possible to create a
comprehensive information architecture that captures Systems Engineering knowledge, but
"possible" does not imply "easy".

There is no "right" information architecture for Systems Engineering; any information
architecture is the result of design decisions in which alternative data models are evaluated
against the needs of stakeholders (SE process owners, participants and customers). An
information architecture could be complete (i.e. have a place for all required information) but
still be inefficient (hard to maintain) and ineffective (hard to understand or hard to use in the SE
tasks that it supports). The information architecture may vary for different domains, e.g. the
level of system context; software vs. hardware emphasis, or life cycle phase.

If a high-quality (complete, simple, efficient, effective, scalable) information architecture is
defined to support the Systems Engineering process, an organization can reap the following
benefits:

• Reproduce artifacts (documents, paragraphs, diagrams and tables) by automated rule-
based assembly of sets of objects.

o Populate paragraphs by the concatenation of object attributes and relationships.

o Populate diagrams from objects (nodes) and their relationships (lines).

o Populate table rows (objects) and columns (attributes, linked objects).

• Shift the focus from artifact (document, view) reviews to object quality. Reduce the
defects that escape into the final artifact.

• Analyze diagrams and tables using rule-based exception reports. Highlight missing,
incomplete or inconsistent data. Improve the quality of an artifact by controlling its
inputs, not by attempts to "inspect-in" quality at the document or view level.

• Eliminate the variability between the actual system model (requirements, design,
architecture) and the views used to communicate the model. This variability could result

UNCLASSFIED

UNCLASSIFIED 5

from random mutations introduced through the copy process, failure to synchronize
multiple object copies when changes occur, and modification of objects to match a new
context or presentation formats. Remove the temptation and ability to fudge the model
for different audiences.

Accelerating the realization of OBSE

This paper proposes a shift in the focus of Systems Engineering from documents and views to
objects. This movement is inevitable and underway, but its pace is inconsistent as roadblocks
are encountered. Such roadblocks include:

• Process inertia/NIH syndrome

• Paradigm blinders - imbalanced emphasis on specific methods

• Tool limitations

• Information silos and kingdoms

• Tight budgets - fear of "boiling the ocean"

FIGURE 2: Roadblocks to OBSE realization

UNCLASSFIED

UNCLASSIFIED 6

We don't propose to abandon documents or views, but to use them as collaboration media. In an
Object-based Systems Engineering world, a document/view will never be the master. That role
is played by the object database.

This paper does not propose a new Systems Engineering methodology, but rather a set of
principles to integrate the information created by multiple, diverse methods. This paper won't
propose the ultimate SE information architecture, but lays the foundation for development of
such a model. The principles should be factored into the design of the Systems Engineering
information architecture.

Object-based System Engineering Principles

Object based Systems Engineering is based on the following principles.

1. Map all SE knowledge to object classes and subclasses

Create an initial information architecture model by answering the following questions:

• What are the primary types of SE knowledge required to support the SE process?
• Which classes and subclasses support the anticipated set of SE process use cases

(types of systems/products to be developed; life cycle phase, project size, system
context)?

• How do these classes of information relate to one another? What classes of
relationships connect various types of SE data?

• What are the most vital and volatile classes of objects/relationships to preserve and
maintain?

FIGURE 3: OBSE Information Architecture

UNCLASSFIED

UNCLASSIFIED 7

Ultimately, the value of any type of knowledge lies in the questions that it can
answer. The knowledge to answer such questions may lie within a single class of
objects or may be captured in the relationships between them.

FIGURE 4: Questions traceability can answer

Test the initial information architecture against the most important questions that will be
posed by the organization.

2. Refine this information architecture against multiple SE methods to make it as lean as

possible (maximize cohesion, minimize coupling).

Information architecture is driven by the set of SE methods engines that have been selected
to power the SE process. In order to refine the information architecture to make it scalable
across a broader range of methods, ask the following:

• What methods could be used to create each class of object? What methods create the

primary relationships among object classes?
• How would different methods engines change the information model (e.g. add new

classes, attributes or relationships) This is the same thing as defining the derived
requirements associated with each methods engine "alternative".

• Can an information model be created that captures the superset of all the
classes/attributes/relationships required by the full range of methods engines under
consideration?

• How can this model be made more lean; simplified to reduce the number of object
classes and/or relationships?

UNCLASSFIED

UNCLASSIFIED 8

For example, most defense projects use a requirements-centric Vee-model as the methods
engine for their requirements development process. This method emphasizes requirement-to-
requirement traceability down the left side of the Vee. If you switch to a decision-centric
methods engine, a new type of relationship is required to capture decision-to-requirement
traceability. [1]

3. Create all objects in context (within a hierarchy appropriate to its class)

SE knowledge represents a network of associated objects. However, within each primary
class of objects, a hierarchical structure (taxonomy) provides an efficient structure. These
class hierarchies typically include subclasses arranged in a recursive pattern.

Class hierarchies are valuable knowledge patterns. They jump-start new projects by seeding
the SE knowledge-base with a proven set of relevant objects. They highlight missing (but
valuable) data as holes in the recursive structure. For example, a leaf-level functional
requirement can be flagged as an incomplete branch in the requirements structure. Every
functional requirement should have at least 1 performance requirement that specifies "How
well?" the function must be performed.

SE knowledge objects never exist in a vacuum; they are always created in the context of
other objects. There is a place for everything; the secret of OBSE is to create and keep
everything in its place.

FIGURE 5: Requirement Hierarchy

UNCLASSFIED

UNCLASSIFIED 9

4. Define each object as a set of lean attributes and relationships (avoid free-form text).

The document model encourages contributors to write free-form text paragraphs. Even with
guidance provided in the form of a document template, this approach leads to jumbled object,
attribute and relationship data within paragraphs.

This individualized and situation-driven writing paradigm leaves translation of each
paragraph into precise objects, attributes and relationships as an exercise for the individual
reader. This is an ad hoc, non-repeatable process that contributes to the ambiguity in the
system model.

As system complexity grows, so grows the need for precise capture of Systems Engineering
knowledge as objects. Every system development project battles two fundamental enemies,
uncertainty and ambiguity. These factors can combine to produce overwhelming complexity
that leads to program failures.

FIGURE 6: Ambiguity vs. Uncertainty

Uncertainty is a product of the real-world unknowns and unknowable’s. It is generally
increasing as the pace of technology change/turnover increases. Uncertainty can be reduced
through investments in knowledge-creating tasks (e.g. simulation and prototypes) but not
driven to zero. Uncertainty may be managed, but can't be eliminated because there are no
facts about the future.

UNCLASSFIED

UNCLASSIFIED 10

Ambiguity is primarily a self-inflicted wound; it results from fuzzy and ad hoc methods that
create high variance in the definition, context, derivation and interpretation of SE knowledge.
The goal of OBSE is to drive ambiguity toward zero. This gives large and/or novel programs
a fighting chance to keep the system model's perceived complexity within the cognitive
limits of their team.

5. Strive for zero redundancy (store a single instance of an object; visualize in many

ways).

Systems Engineering projects suffer from another form of self-inflicted complexity. By
creating copies of objects when populating various documents or viewing data from different
contexts, the team grows the size of the system model. This larger-than-necessary model
must be maintained and navigated, further reducing the team's efficiency.

The goal of OBSE is to maintain a single master instance of each object, i.e. maintain the
leanest possible information model required to define the problem domain and to represent
the proposed solution and the rationale behind it.

In OBSE, version control is focused on these master objects. Each class of object has its own
life cycle model, i.e. it evolves through a series of states. Object-level versioning captures
these states as changes to the attributes and relationships associated with each object.

FIGURE 7: Requirement States

UNCLASSFIED

UNCLASSIFIED 11

In OBSE, documents and views become collaboration media, assembled automatically from
the master objects (i.e. based on well-defined and published rules that ensure that the
appropriate version/state of each object is included within each artifact).

6. Maintain continuous traceability as knowledge is derived.

If you don't maintain derivation traceability continuously, you will never have enough time
to backfill it. It is very simple and cheap to capture at the time connections are made
between objects; it becomes very expensive and impractical when attempted when en masse
for a document or complex view.

Loss of this traceability multiplies the cost of proactive impact/change analysis (what-ifs) or
renders it practically impossible where the original SMEs are unavailable or lack perfect
recall.

7. Capture the precious and transient logic behind this knowledge derivation.

Derivation traceability is very precious, but transient knowledge. The scoring rationale
behind a decision (each cell in an evaluation matrix) or allocation rationale between
requirements and test cases is quickly forgotten and lost forever.

This data is more than a traceability link; it includes the derivation rationale, i.e. how or why
A led to B+C+D. This is typically captured as an attribute on the link. A wise
implementation of OBSE prompts users to succinctly capture this information as links are
made.

To be complete, derivation rationale should also capture minority viewpoints and discussion
threads associated with each object of interest. If the majority view doesn't lead to success,
this data may be helpful in capturing lessons learned to drive process improvement.

8. Leverage the relationships between objects to proactively manage change.

If you maintain continuous derivation traceability, you can exploit it whenever any change is
proposed to any part of the system model. This involves walking the linkages between
objects and assessing the ripple effect, e.g. "How will the proposed change in this
requirement affect the decisions (in which it was used as a criterion), architecture (to which it
was allocated) or test case (to which it was assigned for verification)?

Understanding the ripple effect is typically a human-in-the-loop thought process, but it may
be supplemented by simulation models.

9. Maintain continuity of objects across system/product life cycles and phases.

At the document and view level, very little useful information is passed between
system/acquisition life cycle phases. Most programs operate as a fresh start or simply make a

UNCLASSFIED

UNCLASSIFIED 12

copy of the documents/views and start modifying them. Continuity of thought depends on
continuity of team members.

An OBSE database enables maximum reuse of relevant prior phase knowledge by
maintaining continuity of objects. Instead of copies, the last state of each requirement,
decision or test case is known and becomes the jumping-off point for next phase refinements
or extensions.

10. Harvest and reuse knowledge patterns for each class of object

OBSE captures knowledge within class hierarchies and rule-based data structures. It is much
easier to harvest these structures as knowledge patterns than to try to discern such patterns
from ad hoc document prose.

These patterns enable knowledge reuse across many domains (project types, systems,
technology families); this increases the ROI from investments in Systems Engineering
discipline.

Benefits of Object based System Engineering

The principles of effective OBSE are not black-and-white or foolproof; they require skill,
creativity and balanced judgment to apply to different types of systems, projects and SE
environments. However, if skillfully applied, OBSE principles can yield many benefits:

• Simplify SE tasks. The leanest information model implies the leanest task model to
populate and maintain it. OBSE highlights the value-added steps within Systems
Engineering.

• Reduce overlapping efforts and information silos. Within a document-based SE process,
key process areas tend to produce insulated artifacts. There is much redundant work and
little connectivity between it. Decisions are disconnected from requirements and risks.
TPM plans are unrelated to risks. Use cases are poorly linked to requirements. System
architecture is isolated from the decisions that created it. These silos drive up costs and
promote organizational politics, kingdom-building and turf-wars.

• Foster the insight that leads to innovation. The leanest possible information model
reduces mental clutter and complexity overload to increase the likelihood of innovative
insights. A class-based model encourages efficient, focused brainstorming. A shared
information model fosters collaboration.

• Improve solution quality. Rule-based exception reports can highlight missing, but
needed knowledge in any class of objects. These reports provide a list of loose ends to

UNCLASSFIED

UNCLASSIFIED 13

resolve. Although this doesn't guarantee great thinking, it ensures completeness and
consistency of Systems Engineering knowledge at the object level.

• Accelerate development. OBSE maximizes a team's ability to do parallel and aligned
thinking. This can greatly shorten the time-to-capability to develop and deliver a
complex system.

References

1. FITCH, J. Exploiting Decision-to-Requirements Traceability, briefing to NDIA CMMI
Conference, November, 2009

2. CHHANIYARA, S; SAAJ, C; ALTHOFF-KOTZIAS, M; AHRNS, I; MAEDINGER, B;
Model Based System Engineering for Space Robotics Systems, Sec. 2.2; ESA ASTRA
2011

3. ESTEFAN, J; Survey of Model-Based Systems Engineering (MBSE) Methodologies,
Sec. 3.2; INCOSE MBSE Initiative, 2008

4. WALKER, M; The State of Model Based Systems Engineering, briefing to INCOSE
Chesapeake Chapter, International Workshop, 2011

** Disclaimer: Reference herein to any specific commercial company, product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Government or
the Department of the Army (DoA). The opinions of the authors expressed herein do not
necessarily state or reflect those of the United States Government or the DoA, and shall not
be used for advertising or product endorsement purposes.**

